On the equivalence of Kernel Fisher discriminant analysis and Kernel Quadratic Programming Feature Selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Kernel Fisher Discriminant Analysis

Kernel methods have become standard tools for solving classification and regression problems in statistics. An example of a kernel based classification method is Kernel Fisher discriminant analysis (KFDA), a kernel based extension of linear discriminant analysis (LDA), which was proposed by Mika et al. (1999). As in the case of LDA, the classification performance of KFDA deteriorates in the pre...

متن کامل

Kernel discriminant analysis based feature selection

For two-class problems we propose two feature selection criteria based on kernel discriminant analysis (KDA). The first one is the objective function of kernel discriminant analysis called the KDA criterion. We show that the KDA criterion is monotonic for the deletion of features, which ensures stable feature selection. The second one is the recognition rate obtained by a KDA classifier, called...

متن کامل

Non-Sparse Multiple Kernel Fisher Discriminant Analysis

Sparsity-inducing multiple kernel Fisher discriminant analysis (MK-FDA) has been studied in the literature. Building on recent advances in non-sparse multiple kernel learning (MKL), we propose a non-sparse version of MK-FDA, which imposes a general lp norm regularisation on the kernel weights. We formulate the associated optimisation problem as a semi-infinite program (SIP), and adapt an iterat...

متن کامل

Kernel Fisher Discriminant Analysis in Full Eigenspace

This work proposes a method which enables us to perform kernel Fisher discriminant analysis in the whole eigenspace for face recognition. It employs the ratio of eigenvalues to decompose the entire kernel feature space into two subspaces: a reliable subspace spanned mainly by the facial variation and an unreliable subspace due to finite number of training samples. Eigenvectors are then scaled u...

متن کامل

Matching Pursuit Kernel Fisher Discriminant Analysis

We derive a novel sparse version of Kernel Fisher Discriminant Analysis (KFDA) using an approach based on Matching Pursuit (MP). We call this algorithm Matching Pursuit Kernel Fisher Discriminant Analysis (MPKFDA). We provide generalisation error bounds analogous to those constructed for the Robust Minimax algorithm together with a sample compression bounding technique. We present experimental ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition Letters

سال: 2011

ISSN: 0167-8655

DOI: 10.1016/j.patrec.2011.04.007